

Dr.Ashraf Al-Rimawi
Electromagnetic Theory I
Second Semester, 2017/2018

## Electromagnetics I

## Coordinate Systems and Transformation

- Cartesian Coordinates


$$
\begin{aligned}
& \mathrm{a}_{x} \bullet \mathrm{a}_{y}=0, \mathrm{a}_{y} \bullet \mathrm{a}_{z}=0, \mathrm{a}_{z} \cdot \mathrm{a}_{x}=0 \\
& \mathrm{a}_{x} \bullet \mathrm{a}_{x}=1, \mathrm{a}_{y} \bullet \mathrm{a}_{y}=1, \mathrm{a}_{z} \bullet \mathrm{a}_{z}=1
\end{aligned}
$$

We study right handed coordinates system xyz:

$$
\mathrm{a}_{x} \times \mathrm{a}_{y}=\mathrm{a}_{z}, \mathrm{a}_{y} \times \mathrm{a}_{z}=\mathrm{a}_{x}, \mathrm{a}_{z} \times \mathrm{a}_{x}=\mathrm{a}_{y}
$$

$$
x=\text { constant }, y=\text { constant }, z=\text { constant }
$$

## Coordinate Systems and Transformation

- Orthogonal Curvilinear Coordinates: it is a coordinate system in which the points in space are specified as the intersection of three curved planes (curved lines), which are mutually perpendicular to each other. ( 3 orthogonal planes, basis vectors needed)
Goals:
- Define new coordinate systems for cylindrical and spherical symmetrical problems(plane equations and basis vectors for which only one coordinate changes when moving along)
- To get the differential length differential surface and differential volume in different coordinate systems, because we need them to perform line surface and volume
 integrals for problems with different symmetries
- To convert from one coordinate system to another


## Coordinate Systems and Transformation

- Sometimes presenting space coordinates in a different coordinate system than Cartesian coordinates can be beneficial. Specifically, in problems where spherical or cylindrical symmetry can lead to simplified calculations and treatment of the problem in hand. That is why, the more general curvilinear coordinate system is presented here and the two most important curvilinear coordinates (spherical and cylindrical) are treated in details. To define a coordinate system, the planes need to be defined and basis vectors.
- Any curved plane can be presented as a function of the $x, y, z$ coordinates.
- Suppose a new coordinate curvilinear coordinate system is to be defined by three curved planes ( $u_{1}=$ constant,$u_{2}=$ constant, $u_{3}=$ constant)
- $u_{1}=f_{1}(x, y, z), u_{2}=f_{2}(x, y, z), u_{3}=f_{3}(x, y, z)$
- Inversion of the functions: $x=g_{1}\left(u_{1}, u_{2}, u_{3}\right), y=g_{1}\left(u_{1}, u_{2}, u_{3}\right), z=g_{1}\left(u_{1}, u_{2}, u_{3}\right)$

To represent any vector in the new coordinate system two steps are required:
$\mathbf{A}=\mathrm{A}_{\mathrm{x}}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathbf{a}_{\mathbf{x}^{+}} \mathrm{A}_{\mathrm{z}}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathbf{a}_{\mathrm{y}^{+}} \mathrm{A}_{\mathrm{z}}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathbf{a}_{\mathrm{z}}$

1. Substitute $\mathbf{x}=\mathbf{g}_{1}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right), \mathbf{y}=\mathbf{g}_{1}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right), \mathbf{z}=\mathbf{g}_{1}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$
2. Find the relation between the directions $\mathbf{a}_{\mathbf{u 1}}, \mathbf{a}_{\mathbf{u 2}}, \mathbf{a}_{\mathbf{u} 3}$ and $\mathbf{a}_{\mathbf{x}}, \mathbf{a}_{\mathbf{y}}, \mathbf{a}_{\mathbf{z}}$

## Coordinate Systems and Transformation

- Important: the position vector is very helpful in determining the relation between the directions of the two coordinate systems.


$$
\begin{aligned}
& \mathbf{R}=x \mathbf{a}_{\mathbf{x}+} y \mathbf{a}_{\mathbf{y}+} z \mathbf{a}_{\mathbf{z}} \\
& \mathbf{R}=g_{1}\left(u_{1}, u_{2}, u_{3}\right) \mathbf{a}_{\mathbf{x}}+g_{2}\left(u_{1}, u_{2}, u_{3}\right) \mathbf{a}_{\mathbf{y}}+g_{3}\left(u_{1}, u_{2}, u_{3}\right) \mathbf{a}_{\mathbf{z}}
\end{aligned}
$$

Note: The unit vectors can be only in the Cartesian coordinates for the position vector, because the directions in other coordinate system are dependent of space, whereas, they are independent from the position of the point in space.

The derivative of the position vector with respect to a coordinate (keeping the other two coordinates constant) is in the direction of that coordinate:

$$
\frac{\partial R}{\partial u_{1}}=a_{u_{1}}, \frac{\partial R}{\partial u_{2}}=a_{u_{2}}, \frac{\partial R}{\partial u_{3}}=a_{u_{3}}
$$

$a_{u_{1}}$ might not be a unit vector, we define a unit vector $\mathrm{a}_{u_{1}}$ by dividing by the magnitude of $a_{u_{1}}$

## Coordinate Systems and Transformation

- The unit vectors are:

$$
\begin{aligned}
& \mathrm{a}_{u_{1}}=\frac{d_{u_{1}}}{\left|\frac{\partial R}{\partial u_{1}}\right|}, \mathrm{a}_{u_{2}}=\frac{d_{u_{2}}}{\left|\frac{\partial R}{\partial u_{2}}\right|}, \mathrm{a}_{u_{3}}=\frac{d_{u_{3}}}{\left|\frac{\partial R}{\partial u_{3}}\right|} \quad h_{1}=\left|\frac{\partial R}{\partial u_{1}}\right|, h_{2}=\left|\frac{\partial R}{\partial u_{2}}\right|, h_{3}=\left|\frac{\partial R}{\partial u_{3}}\right| \\
& \mathrm{a}_{u_{1}}=\frac{1}{h_{1}} \frac{\partial R}{\partial u_{1}}, \mathrm{a}_{u_{2}}=\frac{1}{h_{2}} \frac{\partial R}{\partial u_{2}}, \mathrm{a}_{u_{3}}=\frac{1}{h_{3}} \frac{\partial R}{\partial u_{3}} \quad h_{1}, h_{2}, h_{3} \text { are called the conversion } \\
& \text { metric coefficients }
\end{aligned}
$$

The differential length vector is important for finding integrals (such as work, and potential difference), It is also helpful in finding the differential area and volume which is also essential to perform integrals in electromagnetic theory. The conversion factors are necessary to convert a non-length coordinate like angle to a differential length in the direction of that coordinate.

$$
\begin{aligned}
& d R=\frac{\partial R}{\partial u_{1}} d u_{1}+\frac{\partial R}{\partial u_{2}} d u_{2}+\frac{\partial R}{\partial u_{3}} d u_{3} \\
& d R=h_{1} d u_{1} \mathrm{a}_{u_{1}}+h_{2} d u_{2} \mathrm{a}_{u_{2}}+h_{3} d u_{3} \mathrm{a}_{u_{3}}
\end{aligned}
$$

Can be found graphical or using this approach, for more complicated curvilinear coordinates this is easier

## Electromagnetics I

## Coordinate Systems and Transformation

- Differential length area and volume


## Differential length

$$
\begin{aligned}
& d L=h_{1} d u_{1} \mathrm{a}_{u_{1}}+h_{2} d u_{2} \mathrm{a}_{u_{2}}+h_{3} d u_{3} \mathrm{a}_{u_{3}} \\
& d L=\sqrt{\left(h_{1} d u_{1}\right)^{2}+\left(h_{2} d u_{2}\right)^{2}+\left(h_{3} d u_{3}\right)^{2}}
\end{aligned}
$$

Differential area
$d S_{u_{1}}=h_{2} d u_{2} h_{3} d u_{3} \mathrm{a}_{u_{1}}$
$d S_{u_{2}}=h_{1} d u_{1} h_{3} d u_{3} \mathrm{a}_{u_{2}}$
$d S_{u_{3}}=h_{1} d u_{1} h_{2} d u_{2} \mathrm{a}_{u_{3}}$

## Differential Volume

$d V=h_{1} d u_{1} h_{2} d u_{2} h_{3} d u_{3}$


## Coordinate Systems and Transformation

- Circular cylindrical coordinate system



## Coordinate Systems and Transformation

- Circular cylindrical coordinate system $\mathrm{a}_{\rho} \bullet \mathrm{a}_{\varphi}=0, \mathrm{a}_{\varphi} \bullet \mathrm{a}_{z}=0, \mathrm{a}_{z} \bullet \mathrm{a}_{\rho}=0$

$$
\begin{array}{ll}
R=x \mathrm{a}_{x}+y \mathrm{a}_{y}+z \mathrm{a}_{z} & \mathrm{a}_{\rho} \bullet \mathrm{a}_{\rho}=1, \mathrm{a}_{\varphi} \cdot \mathrm{a}_{\varphi}=1, \mathrm{a}_{z} \cdot \mathrm{a}_{z}=1 \\
R=\rho \cos \varphi \mathrm{a}_{x}+\rho \sin \varphi \mathrm{a}_{y}+z \mathrm{a}_{z} & (\rho, \varphi, \mathrm{z}) \Rightarrow \mathrm{a}_{\rho} \times \mathrm{a}_{\varphi}=\mathrm{a}_{z}, \mathrm{a}_{\varphi} \times \mathrm{a}_{z}=\mathrm{a}_{\rho}, \mathrm{a}_{z} \times \mathrm{a}_{\rho}=\mathrm{a}_{\varphi}
\end{array}
$$

Finding the directions and metric coefficients:
$\frac{\partial R}{\partial \rho}=\cos \varphi \mathrm{a}_{x}+\sin \varphi \mathrm{a}_{y}=\boldsymbol{a}_{\rho} \quad \frac{\partial R}{\partial \varphi}=-\rho \sin \varphi \mathrm{a}_{x}+\rho \cos \varphi \mathrm{a}_{y}=d_{\varphi} \quad \frac{\partial R}{\partial z}=\mathrm{a}_{z}=d_{z}$
$\left|\frac{\partial R}{\partial \rho}\right|=h_{\rho}=\sqrt{\cos ^{2} \varphi+\sin ^{2} \varphi}=1 \quad\left|\frac{\partial R}{\partial \varphi}\right|=h_{\varphi}=\sqrt{\rho^{2}\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)}=\rho \quad\left|\frac{\partial R}{\partial z}\right|=h_{z}=\sqrt{1}=1$
$\mathrm{a}_{\rho}=\cos \varphi \mathrm{a}_{x}+\sin \varphi \mathrm{a}_{y}$
$\mathrm{a}_{\varphi}=-\sin \varphi \mathrm{a}_{x}+\cos \varphi \mathrm{a}_{y}$ $\mathrm{a}_{z}=\mathrm{a}_{z}$

Solving the three equations:
$\mathrm{a}_{x}=\cos \varphi \mathrm{a}_{\rho}-\sin \varphi \mathrm{a}_{\varphi}$
$\mathrm{a}_{y}=\sin \varphi \mathrm{a}_{\rho}+\cos \varphi \mathrm{a}_{\varphi}$
$\mathrm{a}_{z}=\mathrm{a}_{z}$

## Coordinate Systems and Transformation

- Circular cylindrical coordinate system


$$
\begin{array}{lll}
d L=d \rho \mathrm{a}_{\rho}+\rho d \varphi \mathrm{a}_{\varphi}+d z \mathrm{a}_{z} & d S_{\rho}=\rho d \varphi d z \mathrm{a}_{\rho} & d V=\rho d \rho d \varphi d z \\
|d L|=\sqrt{(d \rho)^{2}+\rho^{2}(d \varphi)^{2}+(d z)^{2}} & d S_{\varphi}=d \rho d z \mathrm{a}_{\varphi} & \\
& d S_{z}=d \rho \rho d \varphi \mathrm{a}_{z}=\rho d \rho d \varphi \mathrm{a}_{z}
\end{array}
$$

## Coordinate Systems and Transformation

- Conversion between Circular cylindrical coordinates and Cartesian coordinates

$$
\mathbf{A}=A_{x} \mathbf{a}_{x}+A_{y} \mathbf{a}_{y}+A_{z} \mathbf{a}_{z} \quad \text { Conversion } \quad \mathbf{A}=A_{\rho} \mathbf{a}_{\rho}+A_{\phi} \mathbf{a}_{\phi}+A_{z} \mathbf{a}_{z}
$$

To find any desired component of a vector, we recall from the discussion of the dot product that a component in a desired direction may be obtained by taking the dot product of the vector and a unit vector in the desired direction. Hence,

$$
A_{\rho}=\mathbf{A} \cdot \mathbf{a}_{\rho} \quad \text { and } \quad A_{\phi}=\mathbf{A} \cdot \mathbf{a}_{\phi}
$$

Expanding these dot products, we have

$$
\begin{aligned}
& A_{\rho}=\left(A_{x} \mathbf{a}_{x}+A_{y} \mathbf{a}_{y}+A_{z} \mathbf{a}_{z}\right) \cdot \mathbf{a}_{\rho}=A_{x} \mathbf{a}_{x} \cdot \mathbf{a}_{\rho}+A_{y} \mathbf{a}_{y} \cdot \mathbf{a}_{\rho} \\
& A_{\phi}=\left(A_{x} \mathbf{a}_{x}+A_{y} \mathbf{a}_{y}+A_{z} \mathbf{a}_{z}\right) \cdot \mathbf{a}_{\phi}=A_{x} \mathbf{a}_{x} \cdot \mathbf{a}_{\phi}+A_{y} \mathbf{a}_{y} \cdot \mathbf{a}_{\phi} \\
& A_{z}=\left(A_{x} \mathbf{a}_{x}+A_{y} \mathbf{a}_{y}+A_{z} \mathbf{a}_{z}\right) \cdot \mathbf{a}_{z}=A_{z} \mathbf{a}_{z} \cdot \mathbf{a}_{z}=A_{z}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}_{x}=\cos \varphi \mathrm{a}_{\rho}-\sin \varphi \mathrm{a}_{\varphi} \\
& \mathrm{a}_{y}=\sin \varphi \mathrm{a}_{\rho}+\cos \varphi \mathrm{a}_{\varphi} \\
& \mathrm{a}_{z}=\mathrm{a}_{z}
\end{aligned}
$$

| $\mathbf{a}_{x} \cdot \mathbf{a}_{\rho}=\cos \varphi$ | $x=\rho \cos \phi$ |
| :--- | :--- |
| $\mathbf{a}_{y} \cdot \mathbf{a}_{\rho}=\sin \varphi$ | $y=\rho \sin \phi$ |
| $\mathbf{a}_{x} \cdot \mathbf{a}_{\varphi}=-\sin \varphi$ | $z=z$ |

$\mathrm{a}_{y} \cdot \mathrm{a}_{\varphi}=\cos \varphi$

## Coordinate Systems and Transformation

- Conversion between Circular cylindrical coordinates and Cartesian coordinates in matrix form

In matrix form, we have the transformation of vector $\mathbf{A}$ from $\left(A_{x}, A_{y}, A_{z}\right)$ to $\left(A_{\rho}, A_{\phi}, A_{z}\right)$ as

$$
\left[\begin{array}{c}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]
$$

From cylindrical to cartesian

$$
\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]
$$

## Electromagnetics I

## Coordinate Systems and Transformation

- Conversion between Circular cylindrical coordinates and Cartesian coordinates

Dot products of unit vectors in cylindrical and cartesian coordinate systems

|  | $\mathbf{a}_{\rho}$ | $\mathbf{a}_{\phi}$ | $\mathbf{a}_{z}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{a}_{x}$. | $\cos \phi$ | $-\sin \phi$ | 0 |
| $\mathbf{a}_{y^{*}}$. | $\sin \phi$ | $\cos \phi$ | 0 |
| $\mathbf{a}_{z^{*}}$. | 0 | 0 | 1 |

Example:
Transform the vector $\mathbf{B}=y \mathbf{a}_{x}-x \mathbf{a}_{y}+z \mathbf{a}_{z}$ into cylindrical coordinates.

Solution. The new components are

$$
\begin{aligned}
B_{\rho} & =\mathbf{B} \cdot \mathbf{a}_{\rho}=y\left(\mathbf{a}_{x} \cdot \mathbf{a}_{\rho}\right)-x\left(\mathbf{a}_{y} \cdot \mathbf{a}_{\rho}\right) \\
& =y \cos \phi-x \sin \phi=\rho \sin \phi \cos \phi-\rho \cos \phi \sin \phi=0 \\
B_{\phi} & =\mathbf{B} \cdot \mathbf{a}_{\phi}=y\left(\mathbf{a}_{x} \cdot \mathbf{a}_{\phi}\right)-x\left(\mathbf{a}_{y} \cdot \mathbf{a}_{\phi}\right) \\
& =-y \sin \phi-x \cos \phi=-\rho \sin ^{2} \phi-\rho \cos ^{2} \phi=-\rho
\end{aligned}
$$

Thus,

$$
\mathbf{B}=-\rho \mathbf{a}_{\phi}+z \mathbf{a}_{z}
$$

## Coordinate Systems and Transformation

- Spherical coordinate system $\theta=$ constant, $r=$ constant,


$$
\varphi=\text { constant }
$$

$$
\begin{array}{rlrl}
r & =\sqrt{x^{2}+y^{2}+z^{2}} & & (r \geq 0) \\
\theta & =\cos ^{-1} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} & \left(0^{\circ} \leq \theta \leq 180^{\circ}\right) \\
\phi & =\tan ^{-1} \frac{y}{x} &
\end{array}
$$

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta
\end{aligned}
$$



## Coordinate Systems and Transformation

## - Spherical coordinate system

$$
\begin{aligned}
& R=x \mathrm{a}_{x}+y \mathrm{a}_{y}+z \mathrm{a}_{z} \\
& R=r \sin \theta \cos \varphi \mathrm{a}_{x}+r \sin \theta \sin \varphi \mathrm{a}_{y}+r \cos \theta \mathrm{a}_{z}
\end{aligned}
$$

$\mathrm{a}_{r} \bullet \mathrm{a}_{\theta}=0, \mathrm{a}_{\theta} \bullet \mathrm{a}_{\varphi}=0, \mathrm{a}_{\varphi} \bullet \mathrm{a}_{r}=0$
$\mathrm{a}_{r} \cdot \mathrm{a}_{r}=1, \mathrm{a}_{\theta} \bullet \mathrm{a}_{\theta}=1, \mathrm{a}_{\varphi} \bullet \mathrm{a}_{\varphi}=1$
$(\mathrm{r}, \theta, \varphi)=>\mathrm{a}_{r} \times \mathrm{a}_{\theta}=\mathrm{a}_{\varphi}, \mathrm{a}_{\theta} \times \mathrm{a}_{\varphi}=\mathrm{a}_{r}, \mathrm{a}_{\varphi} \times \mathrm{a}_{r}=\mathrm{a}_{\theta}$

Finding the directions and metric coefficients:

$$
\begin{array}{ll}
\frac{\partial R}{\partial r}=\sin \theta \cos \varphi \mathrm{a}_{x}+\sin \theta \sin \varphi \mathrm{a}_{y}+\cos \theta \mathrm{a}_{z}=\vec{a}_{r} & \frac{\partial R}{\partial \theta}=r \cos \theta \cos \varphi \mathrm{a}_{x}+r \cos \theta \sin \varphi \mathrm{a}_{y}-r \sin \theta \mathrm{a}_{z}=a_{\theta} \\
\left|\frac{\partial R}{\partial r}\right|=h_{r}=\sqrt{\sin ^{2} \theta\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)+\cos ^{2} \theta}=1 & \left|\frac{\partial R}{\partial \theta}\right|=h_{\theta}=\sqrt{r^{2} \cos ^{2} \theta\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)+r^{2} \sin ^{2} \theta}=r \\
\mathrm{a}_{r}=\sin \theta \cos \varphi \mathrm{a}_{x}+\sin \theta \sin \varphi \mathrm{a}_{y}+\cos \theta \mathrm{a}_{z} & \mathrm{a}_{\theta}=\cos \theta \cos \varphi \mathrm{a}_{x}+\cos \theta \sin \varphi \mathrm{a}_{y}-\sin \theta \mathrm{a}_{z}
\end{array}
$$

$$
\begin{aligned}
& \frac{\partial R}{\partial \varphi}=-r \sin \theta \sin \varphi \mathrm{a}_{x}+r \sin \theta \cos \varphi \mathrm{a}_{y}=d_{\theta} \\
& \left|\frac{\partial R}{\partial \varphi}\right|=h_{\varphi}=\sqrt{r^{2} \sin ^{2} \theta\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)}=r \sin \theta
\end{aligned}
$$

$$
\mathbf{a}_{\varphi}=-\sin \varphi \mathbf{a}_{x}+\cos \varphi \mathbf{a}_{y}
$$

## Electromagnetics I

## Coordinate Systems and Transformation

- Spherical coordinate system

$d L=d r \mathrm{a}_{r}+r d \theta \mathrm{a}_{\theta}+r \sin \theta d \varphi \mathrm{a}_{\varphi}$
$|d L|=\sqrt{(d r)^{2}+(r d \theta)^{2}+(r \sin \theta d \varphi)^{2}}$

$$
\begin{aligned}
& d S_{r}=r^{2} \sin \theta d \theta d \varphi \mathrm{a}_{r} \quad d V=r^{2} \sin \theta d r d \theta d \varphi \\
& d S_{\theta}=r \sin \theta d r d \varphi \mathrm{a}_{\theta} \\
& d S_{\varphi}=r d r d \theta \mathrm{a}_{\varphi}
\end{aligned}
$$

## Electromagnetics I

## Coordinate Systems and Transformation

- Spherical coordinate system


Figure 2.4 Point $P$ and unit vectors in spherical coordinates.

## TABLE 1.2

Dot products of unit vectors in spherical and cartesian coordinate systems

|  | $\mathbf{a}_{r}$ | $\mathbf{a}_{\theta}$ | $\mathbf{a}_{\phi}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{a}_{x}$. | $\sin \theta \cos \phi$ | $\cos \theta \cos \phi$ | $-\sin \phi$ |
| $\mathbf{a}_{y}$. | $\sin \theta \sin \phi$ | $\cos \theta \sin \phi$ | $\cos \phi$ |
| $\mathbf{a}_{z}$. | $\cos \theta$ | $-\sin \theta$ | 0 |

## Coordinate Systems and Transformation

- Spherical coordinate system conversion to and from Cartesian

In matrix form, the $\left(A_{x}, A_{y}, A_{z}\right) \rightarrow\left(A_{r}, A_{\theta}, A_{\phi}\right)$ vector transformation is performed according to

$$
\left[\begin{array}{l}
A_{r}  \tag{2.27}\\
A_{\theta} \\
A_{\phi}
\end{array}\right]=\left[\begin{array}{llr}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0
\end{array}\right]\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]
$$

The inverse transformation $\left(A_{r}, A_{\theta}, A_{\phi}\right) \rightarrow\left(A_{x}, A_{y}, A_{z}\right)$ is similarly obtained, or we obtain it from eq. (2.23). Thus,

$$
\left[\begin{array}{l}
A_{x}  \tag{2.28}\\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{llr}
\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\
\sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\
\cos \theta & -\sin \theta & 0
\end{array}\right]\left[\begin{array}{l}
A_{r} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]
$$

## Electromagnetics I

## Coordinate Systems and Transformation

- Example Given point $P(-2,6,3)$ and vector $\mathbf{A}=y \mathbf{a}_{x}+(x+z) \mathbf{a}_{y}$, express $P$ and $\mathbf{A}$ in cyl and spherical coordinates. Evaluate $\mathbf{A}$ at $P$ in the Cartesian, cylindrical, and st systems.


## Solution:

At point $P: x=-2, y=6, z=3$. Hence,

$$
\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}}=\sqrt{4+36}=6.32 \\
\phi & =\tan ^{-1} \frac{y}{x}=\tan ^{-1} \frac{6}{-2}=108.43^{\circ} \\
z & =3 \\
r & =\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{4+36+9}=7 \\
\theta & =\tan ^{-1} \frac{\sqrt{x^{2}+y^{2}}}{z}=\tan ^{-1} \frac{\sqrt{40}}{3}=64.62^{\circ}
\end{aligned}
$$

Thus,

$$
P(-2,6,3)=P\left(6.32,108.43^{\circ}, 3\right)=P\left(7,64.62^{\circ}, 108.43^{\circ}\right)
$$

In the Cartesian system, $A$ at $P$ is

$$
\mathbf{A}=6 \mathbf{a}_{x}+\mathbf{a}_{y}
$$

## Coordinate Systems and Transformation

- Cont...

For vector $\mathbf{A}, A_{x}=y, A_{y}=x+z, A_{z}=0$. Hence, in the cylindrical system

$$
\left[\begin{array}{c}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]=\left[\begin{array}{rrr}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
y \\
x+z \\
0
\end{array}\right]
$$

or

$$
\begin{aligned}
& A_{\rho}=y \cos \phi+(x+z) \sin \phi \\
& A_{\phi}=-y \sin \phi+(x+z) \cos \phi \\
& A_{z}=0
\end{aligned}
$$

But $x=\rho \cos \phi, y=\rho \sin \phi$, and substituting these yields

$$
\begin{aligned}
\mathbf{A}=\left(A_{\rho}, A_{\phi}, A_{z}\right)= & {[\rho \cos \phi \sin \phi+(\rho \cos \phi+z) \sin \phi] \mathbf{a}_{\rho} } \\
& +\left[-\rho \sin ^{2} \phi+(\rho \cos \phi+z) \cos \phi\right] \mathbf{a}_{\phi}
\end{aligned}
$$

At $P$

$$
\rho=\sqrt{40}, \quad \tan \phi=\frac{6}{-2}
$$

$$
\begin{aligned}
\cos \phi= & \frac{-2}{\sqrt{40}}, \quad \sin \phi=\frac{6}{\sqrt{40}} \\
\mathbf{A}= & {\left[\sqrt{40} \cdot \frac{-2}{\sqrt{40}} \cdot \frac{6}{\sqrt{40}}+\left(\sqrt{40} \cdot \frac{-2}{\sqrt{40}}+3\right) \cdot \frac{6}{\sqrt{40}}\right] \mathbf{a}_{\rho} } \\
& +\left[-\sqrt{40} \cdot \frac{36}{40}+\left(\sqrt{40} \cdot \frac{-2}{\sqrt{40}}+3\right) \cdot \frac{-2}{\sqrt{40}}\right] \mathbf{a}_{\phi} \\
= & \frac{-6}{\sqrt{40}} \mathbf{a}_{\rho}-\frac{38}{\sqrt{40}} \mathbf{a}_{\phi}=-0.9487 \mathbf{a}_{\rho}-6.008 \mathbf{a}_{\phi}
\end{aligned}
$$

## Coordinate Systems and Transformation

- Cont...

But $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$, and $z=r \cos \theta$. Substituting these yields

$$
\begin{aligned}
\mathbf{A}= & \left(A_{r}, A_{\theta}, A_{\phi}\right) \\
= & r\left[\sin ^{2} \theta \cos \phi \sin \phi+(\sin \theta \cos \phi+\cos \theta) \sin \theta \sin \phi\right] \mathbf{a}_{r} \\
& +r[\sin \theta \cos \theta \sin \phi \cos \phi+(\sin \theta \cos \phi+\cos \theta) \cos \theta \sin \phi] \mathbf{a}_{\theta} \\
& +r\left[-\sin \theta \sin ^{2} \phi+(\sin \theta \cos \phi+\cos \theta) \cos \phi\right] \mathbf{a}_{\phi}
\end{aligned}
$$

At $P$

$$
r=7, \quad \tan \phi=\frac{6}{-2}, \quad \tan \theta=\frac{\sqrt{40}}{3}
$$

Hence,

## Coordinate Systems and Transformation

- Cont...

$$
\begin{aligned}
\cos \phi= & \frac{-2}{\sqrt{40}}, \quad \sin \phi=\frac{6}{\sqrt{40}}, \quad \cos \theta=\frac{3}{7}, \quad \sin \theta=\frac{\sqrt{40}}{7} \\
\mathbf{A}= & 7 \cdot\left[\frac{40}{49} \cdot \frac{-2}{\sqrt{40}} \cdot \frac{6}{\sqrt{40}}+\left(\frac{\sqrt{40}}{7} \cdot \frac{-2}{\sqrt{40}}+\frac{3}{7}\right) \cdot \frac{\sqrt{40}}{7} \cdot \frac{6}{\sqrt{40}}\right] \mathbf{a}_{r} \\
& +7 \cdot\left[\frac{\sqrt{40}}{7} \cdot \frac{3}{7} \cdot \frac{6}{\sqrt{40}} \cdot \frac{-2}{\sqrt{40}}+\left(\frac{\sqrt{40}}{7} \cdot \frac{-2}{\sqrt{40}}+\frac{3}{7}\right) \cdot \frac{3}{7} \cdot \frac{6}{\sqrt{40}}\right] \mathbf{a}_{\theta} \\
& +7 \cdot\left[\frac{-\sqrt{40}}{7} \cdot \frac{36}{40}+\left(\frac{\sqrt{40}}{7} \cdot \frac{-2}{\sqrt{40}}+\frac{3}{7}\right) \cdot \frac{-2}{\sqrt{40}}\right] \mathbf{a}_{\phi} \\
= & \frac{-6}{7} \mathbf{a}_{r}-\frac{18}{7 \sqrt{40}} \mathbf{a}_{\theta}-\frac{38}{\sqrt{40}} \mathbf{a}_{\phi} \\
= & -0.8571 \mathbf{a}_{r}-0.4066 \mathbf{a}_{\theta}-6.008 \mathbf{a}_{\phi}
\end{aligned}
$$

Note that $|\mathbf{A}|$ is the same in the three systems; that is,

$$
|\mathbf{A}(x, y, z)|=|\mathbf{A}(\rho, \phi, z)|=|\mathbf{A}(r, \theta, \phi)|=6.083
$$

## Coordinate Systems and Transformation

- Example: from spherical to cylindrical

$$
\left[\begin{array}{c}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]=\left[\begin{array}{rrr}
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1 \\
\cos \theta & -\sin \theta & 0
\end{array}\right]\left[\begin{array}{c}
A_{r} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
A_{r} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]=\left[\begin{array}{ccc}
\sin \theta & 0 & \cos \theta \\
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]
$$



Figure 2.5 Relationships between space variables $(x, y, z),(r, \theta, \phi)$, and $(\rho, \phi, z)$.

## Coordinate Systems and Transformation

- Distance and vector magnitude in coordinate systems

Important: the magnitude of the vector is the same in all coordinate systems. This can be used as a way to confirm the correctness of conversion.

$$
\begin{aligned}
A & =\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \\
|\mathbf{A}| & =\left(A_{\rho}^{2}+A_{\phi}^{2}+A_{z}^{2}\right)^{1 / 2} \\
|\mathbf{A}| & =\left(A_{r}^{2}+A_{\theta}^{2}+A_{\theta}^{2}\right)^{1 / 2}
\end{aligned}
$$

The distance between two points is usually necessary in EM theory. The distance $d$ between two points with position vectors $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$ is generally given by

$$
\begin{aligned}
& d=\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right| \\
& d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}(\text { Cartesian }) \\
& d^{2}= \rho_{2}^{2}+\rho_{1}^{2}-2 \rho_{1} \rho_{2} \cos \left(\phi_{2}-\phi_{1}\right)+\left(z_{2}-z_{1}\right)^{2}(\text { cylindrical }) \\
& d^{2}= r_{2}^{2}+r_{1}^{2}-2 r_{1} r_{2} \cos \theta_{2} \cos \theta_{1} \\
&-2 r_{1} r_{2} \sin \theta_{2} \sin \theta_{1} \cos \left(\phi_{2}-\phi_{1}\right)(\text { spherical })
\end{aligned}
$$

